- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Joshi, Chandrasekhar (2)
-
Sinclair, Mitchell (2)
-
Aghedo, Adeola (1)
-
Albert, Felicie (1)
-
Arrowsmith, Charles D. (1)
-
Farrell, Audrey (1)
-
King, Paul M. (1)
-
Lemos, Nuno (1)
-
Marsh, Kenneth (1)
-
Marsh, Kenneth A. (1)
-
Miller, Kyle G. (1)
-
Nambu, Noa (1)
-
Nie, Zan (1)
-
Pagano, Isabella (1)
-
Shaw, Jessica L. (1)
-
Wu, Yipeng (1)
-
Zhang, Chaojie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Optical Thomson scattering is now a mature diagnostic tool for precisely measuring local plasma density and temperature. These measurements typically take advantage of a simplified analytical model of the scattered spectrum, which is built upon the assumption that each plasma species is in thermal equilibrium. However, this assumption fails for most laboratory plasmas of interest, which are often produced through high field ionization of atoms via ultrashort laser pulses and vulnerable to several kinetic instabilities. While it is possible to analytically model the Thomson scattered spectrum for some non-Maxwellian distribution functions, it is often not practical to do so for laboratory plasmas with highly complex and unstable distribution functions. We present a new method for predicting the Thomson scattered spectrum from any plasma directly from fully kinetic particle-in-cell simulations. This approach allows us to model the contributions of kinetic instabilities to the Thomson spectrum that aren’t taken into account in Maxwellian theory. We demonstrate this method’s capability to capture nonthermal features in the Thomson spectrum by simulating a simple bumpon- tail plasma as well as a more complex laser-ionized plasma. The versatility of this approach makes it an effective aid in the experimental design of Thomson diagnostics to directly characterize kinetic instabilities in laboratory plasmas. Index Terms—plasma measurement, low-temperature plasmas, plasma diagnostics, plasma simulation, plasma stability, plasma density, plasma temperaturemore » « less
-
Sinclair, Mitchell; Pagano, Isabella; Lemos, Nuno; Shaw, Jessica L.; Miller, Kyle G.; Aghedo, Adeola; Arrowsmith, Charles D.; King, Paul M.; Marsh, Kenneth A.; Albert, Felicie; et al (, Advanced Accelerator Concepts Workshop 2022)We are developing an X-ray source for radiography of high-energy density (HED) experiments by passing a picosecond, relativistic laser beam through an underdense plasma to generate a relativistic beam of electrons. These electrons, in turn, generate bright, (1010 photon/keV/sr), high energy (10 keV - 1 MeV) X-rays. Over the years, this X-ray platform has been demonstrated on the Titan, Omega EP, and NIF-ARC lasers. This paper gives the present state of the field and argues that the platform has reached a level of maturity where the X-rays produced using this novel platform have the potential to find radiographic applications in a broad range of fields. Index Terms—X-ray, High Energy Density Science (HEDS), Self-Modulated Plasma Instability, NIF, OMEGA, Backlightermore » « less
An official website of the United States government

Full Text Available